πŸ“₯Database Loading

This tutorial will guide you in using the AISdb package to load AIS data into a database and perform queries. We will begin with AISdb installation and environment setup, then proceed to examples of querying the loaded data and creating simple visualizations.

Install Requirements

Preparing a Python virtual environment for AISdb is a safe practice. It allows you to manage dependencies and prevent conflicts with other projects, ensuring a clean and isolated setup for your work with AISdb. Run these commands in your terminal based on the operating system you are using:

Linux
python -m venv AISdb         # create a python virtual environment
source ./AISdb/bin/activate  # activate the virtual environment
pip install aisdb            # from https://pypi.org/project/aisdb/
Windows
python -m venv AISdb         # create a virtual environment
./AISdb/Scripts/activate     # activate the virtual environment
pip install aisdb            # install the AISdb package using pip

Now you can check your installation by running:

$ python
>>> import aisdb
>>> aisdb.__version__        # should return '1.7.0' or newer

If you're using AISdb in Jupyter Notebook, please include the following commands in your notebook cells:

# install nest-asyncio for enabling asyncio.run() in Jupyter Notebook
%pip install nest-asyncio

# Some of the systems may show the following error when running the user interface:
# urllib3 v2.0 only supports OpenSSL 1.1.1+; currently, the 'SSL' module is compiled with 'LibreSSL 2.8.3'.
# install urllib3 v1.26.6 to avoid this error
%pip install urllib3==1.26.6

Then, import the required packages:

from datetime import datetime, timedelta
import os
import aisdb
import nest_asyncio
nest_asyncio.apply()

Load AIS data into a database

This section will show you how to efficiently load AIS data into a database.

AISdb includes two database connection approaches:

  1. SQLite database connection; and,

  2. PostgreSQL database connection.

SQLite database connection

We are working with the SQLite database in most of the usage scenarios. Here is an example of loading data using the sample data included in the AISdb package:

The code above decodes the AIS messages from the CSV file specified in filepaths and inserts them into the SQLite database connected via dbconn.

Following is a quick example of a query and visualization of the data we just loaded with AISdb:

start_time = datetime.strptime("2021-07-01 00:00:00", '%Y-%m-%d %H:%M:%S')
end_time = datetime.strptime("2021-07-02 00:00:00", '%Y-%m-%d %H:%M:%S')

with aisdb.SQLiteDBConn(dbpath=dbpath) as dbconn:
    qry = aisdb.DBQuery(
        dbconn=dbconn,
        dbpath='./AIS2.db',
        callback=aisdb.database.sql_query_strings.in_timerange,
        start=start_time,
        end=end_time,
    )
    rowgen = qry.gen_qry()
    tracks = aisdb.track_gen.TrackGen(rowgen, decimate=False)

    if __name__ == '__main__':
        aisdb.web_interface.visualize(
            tracks,
            visualearth=True,
            open_browser=True,
        )

PostgreSQL database connection

In addition to SQLite database connection, PostgreSQL is used in AISdb for its superior concurrency handling and data-sharing capabilities, making it suitable for collaborative environments and handling larger datasets efficiently. The structure and interactions with PostgreSQL are designed to provide robust and scalable solutions for AIS data storage and querying. For PostgreSQL, you need the psycopg2 library:

pip install psycopg2

To connect to a PostgreSQL database, AISdb uses the PostgresDBConn class:

from aisdb.database.dbconn import PostgresDBConn

# Option 1: Using keyword arguments
dbconn = PostgresDBConn(
    hostaddr='127.0.0.1',      # Replace with the PostgreSQL address
    port=5432,                 # Replace with the PostgreSQL running port
    user='USERNAME',           # Replace with the PostgreSQL username
    password='PASSWORD',       # Replace with your password
    dbname='aisviz'            # Replace with your database name
)

# Option 2: Using a connection string
dbconn = PostgresDBConn('postgresql://USERNAME:PASSWORD@HOST:PORT/DATABASE')

Example of performing queries and visualizations with PostgreSQL database:

from aisdb.gis import DomainFromPoints
from aisdb.database.dbqry import DBQuery
from datetime import datetime

# Define a spatial domain centered around the point (-63.6, 44.6) with a radial distance of 50000 meters.
domain = DomainFromPoints(points=[(-63.6, 44.6)], radial_distances=[50000])

# Create a query object to fetch AIS data within the specified time range and spatial domain.
qry = DBQuery(
    dbconn=dbconn,
    start=datetime(2023, 1, 1), end=datetime(2023, 2, 1),
    xmin=domain.boundary['xmin'], xmax=domain.boundary['xmax'],
    ymin=domain.boundary['ymin'], ymax=domain.boundary['ymax'],
    callback=aisdb.database.sqlfcn_callbacks.in_time_bbox_validmmsi
)

# Generate rows from the query
rowgen = qry.gen_qry()

# Convert the generated rows into tracks
tracks = aisdb.track_gen.TrackGen(rowgen, decimate=False)

# Visualize the tracks on a map
aisdb.web_interface.visualize(
    tracks,           # The tracks (trajectories) to visualize.
    domain=domain,    # The spatial domain to use for the visualization.
    visualearth=True, # If True, use Visual Earth for the map background.
    open_browser=True # If True, automatically open the visualization in a web browser.
)

Moreover, if you wish to use your own AIS data to create and process a database with AISdb, please check out our instructional guide on data processing and database creation: Using Your AIS Data.

Last updated